L-Arginine regulates neuronal nitric oxide synthase production of superoxide and hydrogen peroxide

Pei Tsaia,b,c, John Weavera,b,c, Guan Liang Caoa,b,c, Sovitj Pouc, Linda J. Roman d, Anatoly A. Starkove, Gerald M. Rosena,b,c,*

aDepartment of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
bMedical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
cCenter for Low Frequency EPR for In Vivo Physiology, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
dDepartment of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
eDepartment of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA

Received 27 October 2004; accepted 23 December 2004

Abstract

Tetrahydrobiopterin (H4B) in the absence of L-arginine has been shown to be an important factor in promoting the direct formation of hydrogen peroxide (H2O2) at the expense of superoxide (O2·−) by neuronal nitric oxide synthase (NOS1) [Rosen GM, Tsai P, Weaver J, Porasuphatana S, Roman LJ, Starkov AA, et al. Role of tetrahydrobiopterin in the regulation of neuronal nitric-oxide synthase-generated superoxide. J Biol Chem 2002;277:40275–80]. Based on these findings, it is hypothesized that L-arginine also shifts the equilibrium between O2·− and H2O2. Experiments were designed to test this theory. As the concentration of L-arginine and N\textsubscript{\text{\textnu}}-hydroxyl-L-arginine increases, the rate of NADPH consumption for H4B-bound NOS1 decreased resulting in lower rates of both O2·− and H2O2 generation, while increasing the rate of nitric oxide (\text{\textnu}NO) production. At saturating concentrations of L-arginine or N\textsubscript{\text{\textnu}}-hydroxyl-L-arginine (50 μM), NOS1 still produced O2·− and H2O2. Both L-arginine and N\textsubscript{\text{\textnu}}-hydroxyl-L-arginine have greater impact on the rate of generation of O2·− than on H2O2.

© 2005 Elsevier Inc. All rights reserved.

Keywords: L-Arginine; N\textsubscript{\text{\textnu}}-Hydroxyl-L-arginine; superoxide; Nitric oxide; Hydrogen peroxide; Neuronal nitric oxide synthase

1. Introduction

Neuronal nitric oxide synthase (NOS1) (EC 1.14.13.39) is a heme-containing protein that selectively produces nitric oxide (\text{\textnu}NO) from L-arginine [1,2]. This enzyme is comprised of an N-terminal oxidase domain with binding sites for L-arginine and tetrahydrobiopterin (H4B) and a C-terminal reductase domain with binding sites for FMN, FAD, and NADPH. The domains are connected by a Ca2+/calmodulin binding region that allows electron transport through the enzyme [3,4]. In its functional state, NOS is a dimer in which electrons from one subunit of the oxygenase domain accepts electrons from FMN of the reductase domain of the other subunit [5–7]. This unique enzyme catalyzes a two-step monooxygenase reaction, converting L-arginine to \text{\textnu}NO-L-citrulline and then to L-citrulline and \text{\textnu}NO [8,9]. Neuronal nitric oxide synthase also generates superoxide (O2·−) and hydrogen peroxide (H2O2) during enzymic cycling [10–15].

There are a number of control mechanisms that regulate NOS1 production of \text{\textnu}NO, O2·−, and H2O2. For instance, H4B appears to play a critical role in the NOS oxidation of L-arginine to \text{\textnu}NO and L-citrulline [15–23]. Similarly, this pterin, in the absence of this amino acid, promotes direct generation of H2O2 at the expense of O2·− [15]. Finally, L-arginine, by binding to NOS1, shifts electron transport
away from O$_2$, increasing *NO production at the expense of O$_2$* [11]. Since *NO, O$_2$, and H$_2$O$_2$ initiate different cell signaling pathways [24,25], it is important to determine what impact l-arginine might have on NOS1 production of O$_2$* and H$_2$O$_2$. This paper describes a series of experiments designed to investigate the role of l-arginine in H$_4$B-bound NOS1 formation of O$_2$* and H$_2$O$_2$.

2. Materials and methods

2.1. Materials

NADPH, calmodulin, l-arginine, N$^\omega$-hydroxyl-l-arginine, calcium chloride (CaCl$_2$), H$_2$O$_2$, oxyhemoglobin (HbO$_2$), catalase, and horseradish peroxidase (HRP) were purchased from Sigma–Aldrich. Superoxide dismutase (SOD) was obtained from Roche Diagnostics. (Z)-1-{[N-((3-aminopropyl)-N-[4-(3-aminopropylammonio)-butyl]amino)diazen-1-ium-1,2-diolate (SPER-NO) was obtained from Midwest Research Institute. 10-Acetyl-3,7-dihydroximinodiazene-1,2-diolate (BMPO) was purchased from Molecular Probes. Amplex Red was dissolved in DMSO and phenoxazine (Amplex Red) was purchased from Molecular Probes. Nycarbonyl-5-methyl-1-pyrroline (3-aminopropyl)bis(N$^\omega$-hydroxyl-L-arginine or N$^\omega$-hydroxyl-L-arginine (from 0 μM to 50 μM), BMPO-OOH, based on either the EPR spectral peak height or area under the spectral curve, standardized against a stable nitroxide, e.g., 3-carboxy-2,2,5,5-tetramethyl-1-pyrroline N-oxide (BMPO) was prepared as described in the literature [26,27]. All other chemicals were used as purchased without further purification.

2.2. Purification of NOS1

NOS1 was expressed and purified essentially as described by Roman et al. [28], with the modification that the culture volume was 500 mL rather than 1000 mL. The effluent from the ADP sepharose column was reconstituted with H$_2$B (250 μM) at 4 °C. After overnight incubation on ice, this preparation was applied to an S-200 gel filtration column (Pharmacia) to remove excess H$_2$B and to further purify the enzyme. The dimer peak was collected and concentrated. The enzyme concentration was determined by its carbon monoxide (CO)-difference spectrum, as described in [28], using an extinction coefficient of 100 mM$^{-1}$ cm$^{-1}$ at Δλ = 444–475 nm.

2.3. Rate of nitric oxide production from NOS1

The initial rate of *NO production by purified NOS1 was estimated using the HbO$_2$ assay [29]. The reaction was initiated by the addition of NOS1 (34 nM) to a cuvette containing HEPES buffer (50 mM, 0.5 mM EGTA, pH 7.4), HbO$_2$ (20 μM), CaCl$_2$ (2 mM), calmodulin (100 U/ mL), NADPH (150 μM), SOD (30 U/mL), catalase (100 U/mL), and l-arginine (0-100 μM) to a final volume of 0.5 mL at 23 °C. A UV–vis spectrophotometer (Uvikon, Model 940, Research Instruments, San Diego, CA) was used to monitor the conversion of HbO$_2$ to methemoglobin during the course of the reaction. Specifically, the increase in absorbance at 401 nm was used to quantify the reaction using an extinction coefficient of 60 mM$^{-1}$ cm$^{-1}$ at Δε$_{401}$.

2.4. Spin trapping superoxide from NOS1

Spin trapping of O$_2$* from purified NOS1 was conducted by mixing all components to a final volume of 0.25 mL [30]. The reaction mixture was then transferred to a flat quartz cell and placed into the cavity of an EPR spectrometer (model E-109; Varian Associates Inc., Palo Alto, CA). The EPR quartz cell was open to the air. EPR spectra were recorded at room temperature. Instrument settings were: microwave power, 20 mW; modulation frequency, 100 kHz; modulation amplitude, 0.5 G; sweep time, 12.5 G/min; response time, 0.5 s. The receiver gain was 5 × 104. In a typical experiment, NADPH (150 μM) was added to potassium phosphate buffer (chelexed, 50 mM, pH 7.4, 1 mM EGTA, 1 mM DTPA) at 23 °C that contained NOS1 (70 nM), CaCl$_2$ (2 mM)/calmodulin (100 U/mL), BMPO (50 mM), HbO$_2$ (5 μM), and l-arginine or N$^\omega$-hydroxyl-l-arginine (from 0 μM to 50 μM). EPR spectra were recorded continuously after the addition of NADPH to the reaction mixture. The initial rate of O$_2$* generated was calculated by measuring in mm, the peak height of the first low-field peak of the EPR spectrum of BMPO-OOH. Given that this EPR spectrum is a composite of at least two conformers with unequal populations [27], it is very difficult to accurately estimate the concentration of BMPO-OOH, based on either the EPR spectral peak height or area under the spectral curve, standardized against a stable nitroxide, e.g., 3-carboxy-2,2,5,5-tetramethyl-1-pyrroline N-oxide, of known concentration. We have, therefore, chosen to express the rate of O$_2$* production as mm/min.

2.5. Rate of hydrogen peroxide formation

Estimation of H$_2$O$_2$ production was obtained by fluorometric analyses (fluorometer, Hitachi model F2500, High Technologies America Inc., San Jose, CA). A modified method utilizing dye Amplex Red was adopted [31–33]. For control experiments, a microdialysis pump (CMA102 Microdialysis, Stockholm, Sweden) was used to infuse a stock H$_2$O$_2$ solution (0.1 mM). The concentration of commercial 30% H$_2$O$_2$ solution was calculated from light absorbance at 240 nm employing an extinction coefficient of 0.0436 mm$^{-1}$ cm$^{-1}$. Hydrogen peroxide was continuously infused at a rate of 50 pmol/min. The reaction contained Amplex Red (1 μM), HRP (5 U/mL) in sodium phosphate buffer (50 mM, 1 mM EGTA, pH 7.4) in the absence and presence of SPER-NO, generating *NO at a rate of 400 pmol/min. The reaction was monitored as an increase in fluorescence of the dye at 585 nm with the excitation set at 550 nm.

An additional control experiment was undertaken. To a cuvette containing Amplex Red (1 μM), HRP (5 U/mL) in
the presence of either SPER-NO, affording *NO at a rate of 400 pmol/min or L-arginine (50 μM) in sodium phosphate buffer (50 mM, 1 mM EGTA, pH 7.4), H₂O₂ (100 pmol) was added stepwise to a final concentration of 700 pmol.

The reaction was monitored as an increase in fluorescence of the dye at 585 nm with the excitation set at 550 nm.

The rate of H₂O₂ production by NOS1 in the presence of L-arginine or N⁶-hydroxyl-L-arginine was conducted as follows. The reaction mixture contained NADPH (160 μM), CaCl₂ (2 mM), calmodulin (100 U/mL), BMPO (100 mM), L-arginine or N⁶-hydroxyl-L-arginine (0–50 μM), and SOD (0.04 U/mL) in sodium phosphate buffer (50 mM, 1 mM EGTA, pH 7.4) into which Amplex Red (1 μM) and HRP (5 U/mL) was added. SOD was added to each reaction to suppress initial fluorescence seen from the inclusion of NADPH. The reaction was initiated by the addition of NOS1 (5 nM) into the reaction mixture. The initial rate of H₂O₂ generation was recorded as an increase in fluorescence of the dye at 585 nm with the excitation set at 550 nm. The fluorescence was calibrated by generating a standard curve with known concentrations of H₂O₂. A stock solution of H₂O₂ was diluted to 50 μM with water and used for calibration.

2.6. Rate of NADPH oxidation

Monitoring the oxidation of NADPH was performed in a reaction using potassium phosphate buffer (50 mM, pH 7.4, 1 mM DTPA, 1 mM EGTA), CaCl₂ (2 mM), calmodulin (100 U/mL), L-arginine or N⁶-hydroxyl-L-arginine (0-50 μM), and NOS1 (70 nM) at room temperature to a total volume of 0.5 mL. The reaction was initiated by the addition of NADPH (150 μM). Initial rate of NADPH oxidation was estimated spectrophotometrically at 340 nm with an extinction coefficient of 6.22 mM⁻¹ cm⁻¹.

2.7. Curve fitting

Mathematical modeling, as shown in Figs. 1, 4–6 was performed using WinNonlin Pro (Version 4.0.1, Pharsight Corporation, Mountain View, CA 94040).

3. Results

3.1. Vₘₐₓ and Kₘ determination of NOS1

In our initial series of experiments, purified NOS1 production of *NO as measured by the HbO₂ assay [29] was used to determine Vₘₐₓ and Kₘ. Although these values have been determined previously [28], the values for this specific enzyme preparation were beneficial to experiments described herein. The Vₘₐₓ for *NO production from L-arginine was calculated to be 370 nmol/(min mg protein) and the Vₘₐₓ of *NO production from N⁶-hydroxyl-L-arginine was determined to be 357 nmol/(min mg protein). The Kₘ for L-arginine for the NOS1 preparation used in this study was found to be 2.8 μM, the same as that previously reported for this E. coli derived NOS [28]. The Kₘ for N⁶-hydroxyl-L-arginine was determined to be 4.0 μM, slightly lower than the wide range of Kₘ values from different sources of NOS (e.g., 6.6 μM from inducible nitric oxide synthase induced in RAW macrophages [8] and 25 μM from human kidney cells expressing NOS1 [34]), but consistently higher than that of L-arginine.

3.2. Spin trapping superoxide from NOS1

We determined the initial rate of NOS1 generated O₂⁻ at different L-arginine or N⁶-hydroxyl-L-arginine concentrations, ranging from 0 μM to 50 μM. Spin trapping/EPR spectroscopy was the analytical method used for identifying NOS generated O₂⁻ [35]. The choice of spin trap, BMPO, was based on the estimated second-order rate constant of 77 M⁻¹ s⁻¹ for reaction of O₂⁻ with BMPO and the calculated half-life of the corresponding nitroxide, BMPO-OOH of 23 min, which exceeded those constants measured for 5,5-dimethyl-1-pyrroline N-oxide under the same experimental conditions [27]. As the concentration of L-arginine and N⁶-hydroxyl-L-arginine increased from 0 μM to 50 μM, the rate of spin trapping O₂⁻ decreased from 94 ± 5 mm/min to 11 ± 1 mm/min and from 84 ± 13 mm/min to 2.5 ± 0 mm/min, respectively. Percent control values were then calculated from these peak height/min values obtained at the various concentrations of substrate using 0 μM substrate as 100%.
of spin trapping $O_2^{•-}$, as a function of L-arginine or N^α-hydroxyl-L-arginine concentration was best fitted using the inhibitory sigmoidal function as implemented in WinNonlin, as shown in Fig. 1:

$$E = E_{max} - \frac{(E_{max} - E_0)Cy}{Cy + EC_{50}y}$$

where E is the % rate of spin trapping $O_2^{•-}$ observed, E_{max} the maximum % rate of spin trapping $O_2^{•-}$, E_0 the % rate of spin trapping $O_2^{•-}$ at saturated concentration of L-arginine or N^α-hydroxyl-L-arginine, C the concentration of L-arginine or N^α-hydroxyl-L-arginine, and EC_{50} is the concentration of L-arginine or N^α-hydroxyl-L-arginine required to inhibit 50% of the maximum % rate spin trapping $O_2^{•-}$ relative to E_0. The estimates of the EC_{50} and E_0 for L-arginine and N^α-hydroxyl-L-arginine were 1.99 ± 0.24 μM and 7.7%, and 1.63 ± 0.09 μM and 3.3%, respectively. The value γ is the shape parameter (Fig. 1) and estimates of γ were found to be 1.3 and 1.8, respectively.

Given that $O_2^{•-}$ and ^*NO react at diffusion controlled rates [36], we investigated whether the decrease in the rate of spin trapping $O_2^{•-}$ in the presence of increasing concentrations of either L-arginine or N^α-hydroxyl-L-arginine was the result of diminished availability of $O_2^{•-}$ to react with the spin trap, or the direct effect of each substrate on the electron flow through the enzyme. To ascertain which of these possible pathways was operable, spin trapping experiments were performed in the presence of HbO2, a probe that reacts with ^*NO. First, however, we needed to optimize experimental conditions to determine the lowest concentration of HbO2 needed to completely scavenge ^*NO generated by NOS. At concentrations of HbO2, ranging from 3 μM to 10 μM, the rate of ^*NO generated by NOS1, as measured by the HbO2 assay [29] was maximal (data not shown). In contrast, concentrations of HbO2 below 3 μM proved insufficient at removing all the ^*NO that could react with the $O_2^{•-}$ produced by NOS. To guarantee that all ^*NO was scavenged, 5 μM of HbO2 was used during the time course of the following experiments.

As the concentration of L-arginine and N^α-hydroxyl-L-arginine increased from 0 μM to 50 μM, the rate of spin trapping $O_2^{•-}$ in the presence of HbO2 (5 μM) decreased from 74 ± 9 mm/min to 13 ± 3 mm/min and from 58 ± 9 mm/min to 7 ± 1 mm/min, respectively. Data were best fitted using the same inhibitory sigmoidal function. Estimates of γ for L-arginine and N^α-hydroxyl-L-arginine were 1.3 and 3.7, respectively. The calculated EC_{50} and E_0 for both substrates were found to be similar (Table 1).

3.3. Rate of hydrogen peroxide formation

Before the rate of H_2O_2 formation by NOS1 could be estimated, a series of experiments were conducted to determine whether ^*NO produced by the NOS1 metabolism of L-arginine or N^α-hydroxyl-L-arginine, or these substrates, per se, would interfere with the measurement of H_2O_2 using the HRP/Ampex Red fluorometric assay [31–33] as adapted from our earlier studies [15]. In the first set of control experiments, a microdialysis pump was used to infuse H_2O_2 (from a stock of 0.1 mM) into a cuvette (1 mL) containing HRP and Ampex Red. The rate of infusion was 0.5 μL/min, resulting in an H_2O_2 flow of 50 pmol/min. The reaction of H_2O_2 with HRP and consequently with Ampex Red was monitored fluorometrically as described in Section 2. This experiment was repeated in the presence of the ^*NO donor SPER-NO, in which the rate of ^*NO production was adjusted to 400 pmol/min. In the presence of ^*NO, the rate of fluorescence, in response to a constant influx of H_2O_2, was unchanged, as compared to those experiments in the absence of ^*NO, for the initial 2 min of the reaction (Fig. 2). Thereafter, there was a slight inhibition, which only became significant after 4 min. Since we are measuring initial rates, i.e., the scan time is only 1.5 min, of H_2O_2 production under our experimental conditions of a low ^*NO flux, those typically found from NOS1 oxidation of L-arginine, accurate measurement of H_2O_2 generation from NOS1 should be obtainable.

In the second set of control experiments, a point-by-point calibration was performed in which 100 pmol of H_2O_2 was added stepwise to a final concentration of 700 pmol in the absence and presence of a ^*NO flux of 400 pmol/min or L-arginine (50 μM). No significant change in the calibration curve was observed in the presence of ^*NO or L-arginine as compared to control (Fig. 3). Supported by the results from these two sets of control experiments, we were confident that the low flux of ^*NO from NOS1, at 5 nM, would not interfere with enzymatic production of H_2O_2, as assayed by this fluorometric method.

The initial rate of H_2O_2 generation by NOS1 in the presence of increasing L-arginine or N^α-hydroxyl-L-arginine (from 0 μM to 50 μM) was undertaken using the
fluorometric assay described in Section 2. As L-arginine and N^ω-hydroxyl-L-arginine concentration increased from 0 μM to 50 μM, initial rates of H$_2$O$_2$ formation decreased from 203 ± 35 nmol/(min mg protein) to 111 ± 16 nmol/(min mg protein) for L-arginine and 203 ± 35 nmol/(min mg protein) to 134 ± 21 nmol/(min mg protein) for N^ω-hydroxyl-L-arginine, respectively. The V_{max} for NO production from L-arginine was calculated to be 370 nmol/(min mg protein) indicating that H$_2$O$_2$ generation in the absence of L-arginine can reach 55% of NO produced at saturation levels of L-arginine. And even at saturation concentrations of L-arginine, NOS1 can still produce H$_2$O$_2$ at the level of 38% of NO produced. To gain further insight into the electron flow by NOS1, these data were fitted as the percent of the initial rate of H$_2$O$_2$ production as a function of L-arginine or N^ω-hydroxyl-L-arginine concentration using an inhibitory sigmoidal function:

$$E = \frac{E_{\text{max}} - (E_{\text{max}} - E_0)C}{C + EC_{50}}$$

The estimates of EC$_{50}$ and E_0 were 11.5 μM and 44% for L-arginine and 13.4 μM and 42% for N^ω-hydroxyl-L-arginine (Figs. 4 and 5 and Table 1).

Of note, an interesting trend in H$_2$O$_2$ formation was observed at low concentrations of substrate (0–2.5 μM) (inserts in Figs. 4 and 5). Although a plot of H$_2$O$_2$ formation versus concentration reveals the same trend as that seen with O$_2^{**}$ formation for both substrates, at concentrations of L-arginine less than 1 μM, there is a spike in the generation of H$_2$O$_2$ by the enzyme from that produced at 0 μM. In the case of N^ω-hydroxyl-L-arginine, concentra-

Table 1

<table>
<thead>
<tr>
<th></th>
<th>L-Arginine</th>
<th>N^ω-Hydroxyl-L-arginine</th>
<th>L-Arginine with HbO$_2$</th>
<th>N^ω-Hydroxyl-L-arginine with HbO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADPH consumption</td>
<td>7.5 ± 1.8</td>
<td>5.3 ± 1.9</td>
<td>N.A.c</td>
<td>N.A.c</td>
</tr>
<tr>
<td>E_0 (%)</td>
<td>35.4 ± 4.6</td>
<td>30.3 ± 6.3</td>
<td>N.A.c</td>
<td>N.A.c</td>
</tr>
<tr>
<td>Initial rate of O$_2^{**}$ production</td>
<td>2.0 ± 0.2</td>
<td>1.6 ± 0.1</td>
<td>1.3 ± 0.3</td>
<td>2.3 ± 0.2</td>
</tr>
<tr>
<td>E_0 (%)</td>
<td>7.7 ± 3.1</td>
<td>3.3 ± 1.7</td>
<td>17.5 ± 4.5</td>
<td>16.0 ± 3.7</td>
</tr>
<tr>
<td>Initial rate of H$_2$O$_2$ production</td>
<td>11.5 ± 3.7</td>
<td>13.4 ± 4.2</td>
<td>N.A.c</td>
<td>N.A.c</td>
</tr>
<tr>
<td>E_0 (%)</td>
<td>43.7 ± 4.8</td>
<td>42 ± 6.6</td>
<td>N.A.c</td>
<td>N.A.c</td>
</tr>
</tbody>
</table>

a Values are expressed as ± of standard deviation derived from the fitting.

b The values of E_0 are expressed as % of the values without substrates.

c N.A. is none applicable.
N-hydroxyl-L-arginine and EC50 is the concentration of N-hydroxyl-L-arginine required to inhibit 50% of the maximum observed effect. The filled triangles are the observed data (n = 3) and the line is from these fitted data. Insert: detailed view of the data points obtained between 0 μM and 2.5 μM of N-hydroxyl-L-arginine.

The parameters are the same as described above. The 100% effect represents the value of NADPH oxidation in the absence of substrate (Fig. 6). The estimates of the EC50 and E0 for l-arginine and Nω-hydroxyl-L-arginine were 7.5 μM and 35% and 5.3 μM and 30%, respectively.

4. Discussion

We have recently found that NOS1 generates O2•− and H2O2, the latter from the self-dismutation of O2•− as well as from the direct enzymatic reduction of O2 [15]. As shown in Fig. 7, upon accepting an electron from FMNH2, Fe2+ binds O2, generating NOS–(Fe3+)O2•−. In the absence of l-arginine or Nω-hydroxyl-L-arginine, this intermediate transfers an electron to O2 releasing O2•− at a rate v1. Alternatively, NOS–(Fe3+)O2•− can accept an electron, forming NOS–(Fe3+)O2−, which then produces H2O2 with an overall rate v2 (Fig. 7). We have found the rate of O2•− and H2O2 production—the ratio of v1 and v2—to be regulated by H2B (15). However, in the presence of l-arginine, NOS1 production of O2•− decreases in a dose-dependent manner [11,12]. Yet, the impact l-arginine has on the formation of O2•− and H2O2 − the relationship between v3 and v1 and v2 − remains unresolved (Fig. 7). Experiments described herein were aimed at exploring this fundamental question.

Our results suggest that the transfer of electrons from NADPH to O2 in the absence of substrate is faster than the transfer of electrons for the oxidation of l-arginine or Nω-hydroxyl-L-arginine. These results confirm our earlier observation [11]. The EC50 and E0 are essentially the same when either l-arginine or Nω-hydroxyl-L-arginine is used as the substrate (Table 1), indicating that l-arginine and Nω-hydroxyl-L-arginine similarly influences the rate of NADPH consumption for NOS1.

We then turned our attention to the formation of O2•− by NOS1 in the presence of l-arginine or Nω-hydroxyl-L-arginine (Table 1 and Fig. 1). Since NO and O2•− react at 19 × 108 M−1 s−1 forming peroxynitrite (ONOO−)
[36], the decrease in the rate of spin trapping O$_2^{**}$ with increased concentration of either l-arginine or N^ω-hydroxy-L-arginine (Fig. 1), may be due to the elimination of O$_2^{**}$ by *NO, generated from the oxidation of l-arginine or N^ω-hydroxy-L-arginine by NOS, rather than the direct effect of each substrate on the electron flow through the enzyme. To test this possibility, similar experiments were conducted in the presence of HbO$_2$ (5 µM). In the absence of substrates, the rates of spin trapping O$_2^{**}$, in the presence of HbO$_2$ were slightly smaller than those in the absence of HbO$_2$, indicating that HbO$_2$ had some effects on the spin trapping of O$_2^{**}$. However, since data were expressed as percent of the rates of spin trapping O$_2^{**}$ in the absence of substrates, the effects of HbO$_2$ would have minimal impact in the determination of E_o and EC$_{50}$.

The EC$_{50}$ of O$_2^{**}$ formation were similar for both substrates in the absence or presence of HbO$_2$ (5 µM), whereas the E_o was greater in the presence of the *NO scavenger (Table 1). In the absence of HbO$_2$, the rate of spin trapping O$_2^{**}$ was underestimated at substrate concentrations higher than 5 µM due to the reaction of *NO with O$_2^{**}$. Since the values of EC$_{50}$ were close to the values of K_m, these data indicated that the binding of l-arginine or N^ω-hydroxy-L-arginine diverts the flow of electrons toward the formation of *NO and l-citirulline. However, even at saturated concentrations, l-arginine and N^ω-hydroxy-L-arginine did not completely inhibit the generation of O$_2^{**}$ as evidenced by the E_o of 17% in the presence of HbO$_2$.

In a previous study, we reported on the use of the fluorometric assay, consisting of HRP and Amplex Red to measure the rate of H$_2$O$_2$ generation from NOS1 in the absence of L-arginine [15]. In the initial step, HRP is oxidized by H$_2$O$_2$ to afford Compound I. Amplex Red is further oxidized by Compound I. This reaction yields Compound II and the Amplex Red free radical. This intermediate then reacts with Compound II to regenerate HRP and the fluorescent resorufin [31–33]. This method has been shown to be applicable to estimating rates of H$_2$O$_2$ production from NOS1 in the absence of l-arginine [15]. However, a recent paper demonstrated that Compounds I and II of HRP react with *NO with rate constants that may compromise measurements of H$_2$O$_2$ from this enzyme when l-arginine is present [37]. Reactions described in this paper [37] required the addition of *NO into mixtures containing HRP and H$_2$O$_2$ in which *NO was introduced as a bolus at 5 µM. We felt that there may be experimental conditions that would allow estimation of the rate of H$_2$O$_2$ production from NOS1 in the presence of l-arginine. Therefore, control experiments, as described in Section 3, demonstrated that *NO produced by NOS1 did not affect the determination of direct H$_2$O$_2$ formation (Figs. 2 and 3).

Based on the results for direct H$_2$O$_2$ formation by NOS1 in the absence and presence of l-arginine and N^ω-hydroxy-L-arginine, the EC$_{50}$ and E_o are not significantly different for both substrates, indicating that l-arginine and N^ω-hydroxy-L-arginine similarly influence the rate of H$_2$O$_2$ formation by NOS1. The EC$_{50}$ for the formation of H$_2$O$_2$ is much higher than that for the formation of O$_2^{**}$ (Table 1) and that for the K_m of l-arginine and N^ω-hydroxy-L-arginine for the generation of *NO. These results indicate that the binding of either substrates slows the rate of O$_2^{**}$ formation (v_1) and the rate of H$_2$O$_2$ formation (v_2) by shifting the electron flow from NOS–(Fe$^{3+}$)(O$_2^{**}$) toward the formation of NOS–(Fe$^{3+}$)(O$_2^{*}$) and then ultimately

Fig. 7. A model depicting the formation of O$_2^{*}$ and H$_2$O$_2$ by NOS1 in the presence of l-arginine. We envision that [Fe$^{3+}$–O$_2^{*}$] releases O$_2^{**}$ with rate v_1. [Fe$^{3+}$–O$_2^{*}$] after accepting an additional electron forms [Fe$^{3+}$–O$_2$], which can either release H$_2$O$_2$ with an overall rate of v_2 or rearrange to form the perferryl intermediate, [Fe$^{5+}$=O]$^{3+}$ that subsequently catalyzes the formation of *NO from l-arginine at the expense of H$_2$O$_2$.
toward the formation of the perfferyl NOS–(FeV=O) (V3)(Fig. 7). This allows NOS to oxidize L-arginine or N\textomega-hydroxyl-L-arginine to L-citrulline and \textomegaNO. These findings also show that even at saturating concentrations of L-arginine or N\textomega-hydroxyl-L-arginine, a significant amount of H\textsubscript{2}O\textsubscript{2} is still produced. In fact, the estimated value of \(E_o\) for both substrates is approximately 60% of the initial rate of H\textsubscript{2}O\textsubscript{2} formation in the absence of substrates (Table 1). These data combined with those from O\textsubscript{2}\textomega– demonstrate that the addition of L-arginine or N\textomega-hydroxyl-L-arginine channel electron flow toward the formation of the perfferyl, NOS–(FeV=O), by increasing the rate \(v_3\) at the expense of \(v_1\) (Fig. 7). However, the greater value of EC\textsubscript{50} for the formation of H\textsubscript{2}O\textsubscript{2} than that of \(K_m\) of L-arginine or N\textomega-hydroxyl-L-arginine suggests that part of the generation of H\textsubscript{2}O\textsubscript{2} is unrelated to the formation of the perfferyl complex, perhaps coming from the reductase domain. This is consistent with the greater value of \(E_o\) for H\textsubscript{2}O\textsubscript{2} (~40%) compared with that of O\textsubscript{2}\textomega (~16%).

Experiments presented herein were designed to examine what impact L-arginine and N\textomega-hydroxyl-L-arginine has on NOS1 production of O\textsubscript{2}\textomega– and H\textsubscript{2}O\textsubscript{2}. Several important observations are readily apparent from our studies. First, our data demonstrate that both L-arginine and N\textomega-hydroxyl-L-arginine slow the rate of NADPH consumption by NOS1. This results in diminished rates of O\textsubscript{2}\textomega– and H\textsubscript{2}O\textsubscript{2} formation, \(v_1\) and \(v_2\). L-Arginine and N\textomega-hydroxyl-L-arginine have the same influence in inhibiting the relative generation of O\textsubscript{2}\textomega– and H\textsubscript{2}O\textsubscript{2} by NOS1. Concomitant with this, both L-arginine and N\textomega-hydroxyl-L-arginine shift electron transfer to form L-citrulline and \textomegaNO more efficiently, e.g., higher \(v_3\) (Fig. 7). Therefore, more \textomegaNO is generated with higher concentration of L-arginine or N\textomega-hydroxyl-L-arginine. Second, even at saturating concentrations of L-arginine or N\textomega-hydroxyl-L-arginine, the EC\textsubscript{50} for O\textsubscript{2}\textomega– is much higher than that for O\textsubscript{2}\textomega (Figs. 1, 4 and 5 and Table 1). This finding indicates that L-arginine and N\textomega-hydroxyl-L-arginine are more efficacious inhibitors of O\textsubscript{2}\textomega– than of H\textsubscript{2}O\textsubscript{2}. This observation is consistent with the fact that L-arginine or N\textomega-hydroxyl-L-arginine drives the formation of NOS–(Fe\textomega+)(O\textsubscript{2}\textomega–), and NOS–(FeV=O), as these intermediates are responsible for the formation of H\textsubscript{2}O\textsubscript{2} and \textomegaNO, which makes the formation of O\textsubscript{2}\textomega– unfavorable (Fig. 7). At saturating concentrations of L-arginine or N\textomega-hydroxyl-L-arginine, \(E_o\) for both H\textsubscript{2}O\textsubscript{2} and O\textsubscript{2}\textomega– does not reach zero, indicating there is always H\textsubscript{2}O\textsubscript{2} and O\textsubscript{2}\textomega– formed in the reaction. Also, the \(E_o\) for H\textsubscript{2}O\textsubscript{2} is higher than that of O\textsubscript{2}\textomega–. This observation sustains the theory that L-arginine or N\textomega-hydroxyl-L-arginine drives the formation of NOS–(Fe\textomega+)(O\textsubscript{2}\textomega–), leading to the production of H\textsubscript{2}O\textsubscript{2}, which is competitive with \textomegaNO and L-citrulline production. These findings are supportive of the proposed mechanism (Fig. 7) that the formation of \textomegaNO and L-citrulline requires the intermediate NOS–(FeV=O). Since this perfferyl species is derived from NOS–(Fe\textomega+)(O\textsubscript{2}\textomega–) and NOS–(FeV=O), one would expect the formation of O\textsubscript{2}\textomega– and H\textsubscript{2}O\textsubscript{2}.

While it is premature to speculate as to the pharmacological significance of our findings, we would like to offer two possible scenarios. First, it has been found in this study that NOS1 generates O\textsubscript{2}\textomega– and H\textsubscript{2}O\textsubscript{2} in addition to \textomegaNO, even at saturating levels of L-arginine. The generation of these reactive oxygen species may have a deleterious pharmacological effect during the normal function of NOS1, especially if SOD and peroxidases, which would otherwise control cellular levels of these oxidants are compromised. For instance, O\textsubscript{2}\textomega– can react with \textomegaNO to form ONOO–, a potent oxidant that can elicit tissue injury [38–39]. Second, we have recently demonstrated that NOS1, in transfected kidney 293 cells, can differentially regulate the ERK signal transduction pathway, whose activity was controlled by varying cellular levels of \textomegaNO and O\textsubscript{2}\textomega– [40].

Acknowledgments

This research was supported in parts by Grants from the National Institutes of Health, EB-2034 (GMR and JW), AG-20445 (PT) and GM-52419 (LJR) and the Robert A. Welch Foundation Grant AQ1192 (LJR).

References

